Appendix A. Contributed Scripts

These scripts, while not fitting into the text of this document, do illustrate some interesting shell programming techniques. They are useful, too. Have fun analyzing and running them.

Example A-1. manview: Viewing formatted manpages

#!/bin/bash
# manview.sh: Formats the source of a man page for viewing.

# This is useful when writing man page source and you want to
# look at the intermediate results on the fly while working on it.

E_WRONGARGS=65

if [ -z "$1" ]
then
  echo "Usage: `basename $0` [filename]"
  exit $E_WRONGARGS
fi

groff -Tascii -man $1 | less
# From the man page for groff.

# If the man page includes tables and/or equations,
# then the above code will barf.
# The following line can handle such cases.
#
#   gtbl < "$1" | geqn -Tlatin1 | groff -Tlatin1 -mtty-char -man
#
#   Thanks, S.C.

exit 0

Example A-2. mailformat: Formatting an e-mail message

#!/bin/bash
# mail-format.sh: Format e-mail messages.

# Gets rid of carets, tabs, also fold excessively long lines.

ARGS=1
E_BADARGS=65
E_NOFILE=66

if [ $# -ne $ARGS ]  # Correct number of arguments passed to script?
then
  echo "Usage: `basename $0` filename"
  exit $E_BADARGS
fi

if [ -f "$1" ]       # Check if file exists.
then
    file_name=$1
else
    echo "File \"$1\" does not exist."
    exit $E_NOFILE
fi

MAXWIDTH=70          # Width to fold long lines to.

sed '
s/^>//
s/^  *>//
s/^  *//
s/              *//
' $1 | fold -s --width=$MAXWIDTH
          # -s option to "fold" breaks lines at whitespace, if possible.

# This script was inspired by an article in a well-known trade journal
# extolling a 164K Windows utility with similar functionality.

exit 0

Example A-3. rn: A simple-minded file rename utility

This script is a modification of Example 12-13.

#! /bin/bash
#
# Very simpleminded filename "rename" utility (based on "lowercase.sh").
#
# The "ren" utility, by Vladimir Lanin (lanin@csd2.nyu.edu),
# does a much better job of this.


ARGS=2
E_BADARGS=65
ONE=1                     # For getting singular/plural right (see below).

if [ $# -ne "$ARGS" ]
then
  echo "Usage: `basename $0` old-pattern new-pattern"
  # As in "rn gif jpg", which renames all gif files in working directory to jpg.
  exit $E_BADARGS
fi

number=0                  # Keeps track of how many files actually renamed.


for filename in *$1*      #Traverse all matching files in directory.
do
   if [ -f "$filename" ]  # If finds match...
   then
     fname=`basename $filename`            # Strip off path.
     n=`echo $fname | sed -e "s/$1/$2/"`   # Substitute new for old in filename.
     mv $fname $n                          # Rename.
     let "number += 1"
   fi
done   

if [ "$number" -eq "$ONE" ]                # For correct grammar.
then
 echo "$number file renamed."
else 
 echo "$number files renamed."
fi 

exit 0


# Exercise for reader:
# What type of files will this not work on?
# How to fix this?

Example A-4. encryptedpw: Uploading to an ftp site, using a locally encrypted password

#!/bin/bash

# Example "ex72.sh" modified to use encrypted password.

E_BADARGS=65

if [ -z "$1" ]
then
  echo "Usage: `basename $0` filename"
  exit $E_BADARGS
fi  

Username=bozo           # Change to suit.

Filename=`basename $1`  # Strips pathname out of file name

Server="XXX"
Directory="YYY"         # Change above to actual server name & directory.


password=`cruft <pword`
# "pword" is the file containing encrypted password.
# Uses the author's own "cruft" file encryption package,
# based on the classic "onetime pad" algorithm,
# and obtainable from:
# Primary-site:   ftp://metalab.unc.edu /pub/Linux/utils/file
#                 cruft-0.2.tar.gz [16k]


ftp -n $Server <<End-Of-Session
user $Username $Password
binary
bell
cd $Directory
put $Filename
bye
End-Of-Session
# -n option to "ftp" disables auto-logon.
# "bell" rings 'bell' after each file transfer.

exit 0

Example A-5. copy-cd: Copying a data CD

#!/bin/bash
# copy-cd.sh: copying a data CD

CDROM=/dev/cdrom                           # CD ROM device
OF=/home/bozo/projects/cdimage.iso         # output file
#       /xxxx/xxxxxxx/                     Change to suit your system.
BLOCKSIZE=2048
SPEED=2                                    # May use higher speed if supported.

echo; echo "Insert source CD, but do *not* mount it."
echo "Press ENTER when ready. "
read ready                                 # Wait for input, $ready not used.

echo; echo "Copying the source CD to $OF."
echo "This may take a while. Please be patient."

dd if=$CDROM of=$OF bs=$BLOCKSIZE          # Raw device copy.


echo; echo "Remove data CD."
echo "Insert blank CDR."
echo "Press ENTER when ready. "
read ready                                 # Wait for input, $ready not used.

echo "Copying $OF to CDR."

cdrecord -v -isosize speed=$SPEED dev=0,0 $OF
# Uses Joerg Schilling's "cdrecord" package (see its docs).
# http://www.fokus.gmd.de/nthp/employees/schilling/cdrecord.html


echo; echo "Done copying $OF to CDR on device $CDROM."

echo "Do you want to erase the image file (y/n)? "  # Probably a huge file.
read answer

case "$answer" in
[yY]) rm -f $OF
      echo "$OF erased."
      ;;
*)    echo "$OF not erased.";;
esac

echo

# Exercise for the reader:
# Change the above "case" statement to also accept "yes" and "Yes" as input.

exit 0

Example A-6. days-between: Calculate number of days between two dates

#!/bin/bash
# days-between.sh:    Number of days between two dates.
# Usage: ./days-between.sh [M]M/[D]D/YYYY [M]M/[D]D/YYYY

ARGS=2                # Two command line parameters expected.
E_PARAM_ERR=65        # Param error.

REFYR=1600            # Reference year.
CENTURY=100
DIY=365
ADJ_DIY=367           # Adjusted for leap year + fraction.
MIY=12
DIM=31
LEAPCYCLE=4

MAXRETVAL=256         # Largest permissable
                      # positive return value from a function.

diff=                 # Declare global variable for date difference.
value=                # Declare global variable for absolute value.
day=                  # Declare globals for day, month, year.
month=
year=


Param_Error ()        # Command line parameters wrong.
{
  echo "Usage: `basename $0` [M]M/[D]D/YYYY [M]M/[D]D/YYYY"
  echo "       (date must be after 1/3/1600)"
  exit $E_PARAM_ERR
}  


Parse_Date ()                 # Parse date from command line params.
{
  month=${1%%/**}
  dm=${1%/**}                 # Day and month.
  day=${dm#*/}
  let "year = `basename $1`"  # Not a filename, but works just the same.
}  


check_date ()                 # Checks for invalid date(s) passed.
{
  [ "$day" -gt "$DIM" ] || [ "$month" -gt "$MIY" ] || [ "$year" -lt "$REFYR" ] && Param_Error
  # Exit script on bad value(s).
  # Uses "or-list / and-list".
  # Exercise for the reader: Implement more rigorous date checking.
}


strip_leading_zero () # Better to strip possible leading zero(s)
{                     # from day and/or month
  val=${1#0}          # since otherwise Bash will interpret them
  return $val         # as octal values (POSIX.2, sect 2.9.2.1).
}


day_index ()          # Gauss' Formula:
{                     # Days from Jan. 3, 1600 to date passed as param.

  day=$1
  month=$2
  year=$3

  let "month = $month - 2"
  if [ "$month" -le 0 ]
  then
    let "month += 12"
    let "year -= 1"
  fi  

  let "year -= $REFYR"
  let "indexyr = $year / $CENTURY"


  let "Days = $DIY*$year + $year/$LEAPCYCLE - $indexyr + $indexyr/$LEAPCYCLE + $ADJ_DIY*$month/$MIY + $day - $DIM"
  # For an in-depth explanation of this algorithm, see
  # http://home.t-online.de/home/berndt.schwerdtfeger/cal.htm


  if [ "$Days" -gt "$MAXRETVAL" ]  # If greater than 256,
  then                             # then change to negative value
    let "dindex = 0 - $Days"       # which can be returned from function.
  else let "dindex = $Days"
  fi

  return $dindex

}  


calculate_difference ()            # Difference between to day indices.
{
  let "diff = $1 - $2"             # Global variable.
}  


abs ()                             # Absolute value
{                                  # Uses global "value" variable.
  if [ "$1" -lt 0 ]                # If negative
  then                             # then
    let "value = 0 - $1"           # change sign,
  else                             # else
    let "value = $1"               # leave it alone.
  fi
}



if [ $# -ne "$ARGS" ]              # Require two command line params.
then
  Param_Error
fi  

Parse_Date $1
check_date $day $month $year      # See if valid date.

strip_leading_zero $day           # Remove any leading zeroes
day=$?                            # on day and/or month.
strip_leading_zero $month
month=$?

day_index $day $month $year
date1=$?

abs $date1                         # Make sure it's positive
date1=$value                       # by getting absolute value.

Parse_Date $2
check_date $day $month $year

strip_leading_zero $day
day=$?
strip_leading_zero $month
month=$?

day_index $day $month $year
date2=$?

abs $date2                         # Make sure it's positive.
date2=$value

calculate_difference $date1 $date2

abs $diff                          # Make sure it's positive.
diff=$value

echo $diff

exit 0
# Compare this script with the implementation of Gauss' Formula in C at
# http://buschencrew.hypermart.net/software/datedif

+

The following two scripts are by Mark Moraes of the University of Toronto. See the enclosed file "Moraes-COPYRIGHT" for permissions and restrictions.

Example A-7. behead: Removing mail and news message headers

#! /bin/sh
# Strips off the header from a mail/News message i.e. till the first
# empty line
# Mark Moraes, University of Toronto

# ==> These comments added by author of this document.

if [ $# -eq 0 ]; then
# ==> If no command line args present, then works on file redirected to stdin.
        sed -e '1,/^$/d' -e '/^[        ]*$/d'
        # --> Delete empty lines and all lines until 
        # --> first one beginning with white space.
else
# ==> If command line args present, then work on files named.
        for i do
                sed -e '1,/^$/d' -e '/^[        ]*$/d' $i
                # --> Ditto, as above.
        done
fi

# ==> Exercise for the reader: Add error checking and other options.
# ==>
# ==> Note that the small sed script repeats, except for the arg passed.
# ==> Does it make sense to embed it in a function? Why or why not?

Example A-8. ftpget: Downloading files via ftp

#! /bin/sh 
# $Id: ftpget,v 1.2 91/05/07 21:15:43 moraes Exp $ 
# Script to perform batch anonymous ftp. Essentially converts a list of
# of command line arguments into input to ftp.
# Simple, and quick - written as a companion to ftplist 
# -h specifies the remote host (default prep.ai.mit.edu) 
# -d specifies the remote directory to cd to - you can provide a sequence 
# of -d options - they will be cd'ed to in turn. If the paths are relative, 
# make sure you get the sequence right. Be careful with relative paths - 
# there are far too many symlinks nowadays.  
# (default is the ftp login directory)
# -v turns on the verbose option of ftp, and shows all responses from the 
# ftp server.  
# -f remotefile[:localfile] gets the remote file into localfile 
# -m pattern does an mget with the specified pattern. Remember to quote 
# shell characters.  
# -c does a local cd to the specified directory
# For example, 
#       ftpget -h expo.lcs.mit.edu -d contrib -f xplaces.shar:xplaces.sh \
#               -d ../pub/R3/fixes -c ~/fixes -m 'fix*' 
# will get xplaces.shar from ~ftp/contrib on expo.lcs.mit.edu, and put it in
# xplaces.sh in the current working directory, and get all fixes from
# ~ftp/pub/R3/fixes and put them in the ~/fixes directory. 
# Obviously, the sequence of the options is important, since the equivalent
# commands are executed by ftp in corresponding order
#
# Mark Moraes (moraes@csri.toronto.edu), Feb 1, 1989 
# ==> Angle brackets changed to parens, so Docbook won't get indigestion.
#


# ==> These comments added by author of this document.

# PATH=/local/bin:/usr/ucb:/usr/bin:/bin
# export PATH
# ==> Above 2 lines from original script probably superfluous.

TMPFILE=/tmp/ftp.$$
# ==> Creates temp file, using process id of script ($$)
# ==> to construct filename.

SITE=`domainname`.toronto.edu
# ==> 'domainname' similar to 'hostname'
# ==> May rewrite this to parameterize this for general use.

usage="Usage: $0 [-h remotehost] [-d remotedirectory]... [-f remfile:localfile]... \
                [-c localdirectory] [-m filepattern] [-v]"
ftpflags="-i -n"
verbflag=
set -f          # So we can use globbing in -m
set x `getopt vh:d:c:m:f: $*`
if [ $? != 0 ]; then
        echo $usage
        exit 65
fi
shift
trap 'rm -f ${TMPFILE} ; exit' 0 1 2 3 15
echo "user anonymous ${USER-gnu}@${SITE} > ${TMPFILE}"
# ==> Added quotes (recommended in complex echoes).
echo binary >> ${TMPFILE}
for i in $*   # ==> Parse command line args.
do
        case $i in
        -v) verbflag=-v; echo hash >> ${TMPFILE}; shift;;
        -h) remhost=$2; shift 2;;
        -d) echo cd $2 >> ${TMPFILE}; 
            if [ x${verbflag} != x ]; then
                echo pwd >> ${TMPFILE};
            fi;
            shift 2;;
        -c) echo lcd $2 >> ${TMPFILE}; shift 2;;
        -m) echo mget "$2" >> ${TMPFILE}; shift 2;;
        -f) f1=`expr "$2" : "\([^:]*\).*"`; f2=`expr "$2" : "[^:]*:\(.*\)"`;
            echo get ${f1} ${f2} >> ${TMPFILE}; shift 2;;
        --) shift; break;;
        esac
done
if [ $# -ne 0 ]; then
        echo $usage
        exit 65   # ==> Changed from "exit 2" to conform with standard.
fi
if [ x${verbflag} != x ]; then
        ftpflags="${ftpflags} -v"
fi
if [ x${remhost} = x ]; then
        remhost=prep.ai.mit.edu
        # ==> Rewrite to match your favorite ftp site.
fi
echo quit >> ${TMPFILE}
# ==> All commands saved in tempfile.

ftp ${ftpflags} ${remhost} < ${TMPFILE}
# ==> Now, tempfile batch processed by ftp.

rm -f ${TMPFILE}
# ==> Finally, tempfile deleted (you may wish to copy it to a logfile).


# ==> Exercises for reader:
# ==> 1) Add error checking.
# ==> 2) Add bells & whistles.

+

Antek Sawicki contributed the following script, which makes very clever use of the parameter substitution operators discussed in Section 9.2.

Example A-9. password: Generating random 8-character passwords

#!/bin/bash
# May need to be invoked with  #!/bin/bash2  on older machines.
#
# Random password generator for bash 2.x by Antek Sawicki <tenox@tenox.tc>,
# who generously gave permission to the document author to use it here.
#
# ==> Comments added by document author ==>


MATRIX="0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz"
LENGTH="8"
# ==> May change 'LENGTH' for longer password, of course.


while [ "${n:=1}" -le "$LENGTH" ]
# ==> Recall that := is "default substitution" operator.
# ==> So, if 'n' has not been initialized, set it to 1.
do
        PASS="$PASS${MATRIX:$(($RANDOM%${#MATRIX})):1}"
        # ==> Very clever, but tricky.

        # ==> Starting from the innermost nesting...
        # ==> ${#MATRIX} returns length of array MATRIX.

        # ==> $RANDOM%${#MATRIX} returns random number between 1
        # ==> and length of MATRIX - 1.

        # ==> ${MATRIX:$(($RANDOM%${#MATRIX})):1}
        # ==> returns expansion of MATRIX at random position, by length 1. 
        # ==> See {var:pos:len} parameter substitution in Section 3.3.1
        # ==> and following examples.

        # ==> PASS=... simply pastes this result onto previous PASS (concatenation).

        # ==> To visualize this more clearly, uncomment the following line
        # ==>             echo "$PASS"
        # ==> to see PASS being built up,
        # ==> one character at a time, each iteration of the loop.

        let n+=1
        # ==> Increment 'n' for next pass.
done

echo "$PASS"      # ==> Or, redirect to file, as desired.

exit 0

+

James R. Van Zandt contributed this script, which uses named pipes and, in his words, "really exercises quoting and escaping".

Example A-10. fifo: Making daily backups, using named pipes

#!/bin/bash
# ==> Script by James R. Van Zandt, and used here with his permission.

# ==> Comments added by author of this document.

  
  HERE=`uname -n`    # ==> hostname
  THERE=bilbo
  echo "starting remote backup to $THERE at `date +%r`"
  # ==> `date +%r` returns time in 12-hour format, i.e. "08:08:34 PM".
  
  # make sure /pipe really is a pipe and not a plain file
  rm -rf /pipe
  mkfifo /pipe       # ==> Create a "named pipe", named "/pipe".
  
  # ==> 'su xyz' runs commands as user "xyz".
  # ==> 'ssh' invokes secure shell (remote login client).
  su xyz -c "ssh $THERE \"cat >/home/xyz/backup/${HERE}-daily.tar.gz\" < /pipe"&
  cd /
  tar -czf - bin boot dev etc home info lib man root sbin share usr var >/pipe
  # ==> Uses named pipe, /pipe, to communicate between processes:
  # ==> 'tar/gzip' writes to /pipe and 'ssh' reads from /pipe.

  # ==> The end result is this backs up the main directories, from / on down.

  # ==> What are the advantages of a "named pipe" in this situation,
  # ==> as opposed to an "anonymous pipe", with |?
  # ==> Will an anonymous pipe even work here?


  exit 0

+

Stephane Chazelas contributed the following script to demonstrate that generating prime numbers does not require arrays.

Example A-11. Generating prime numbers using the modulo operator

#!/bin/bash
# primes.sh: Generate prime numbers, without using arrays.

# This does *not* use the classic "Sieve of Erastosthenes" algorithm,
# but instead uses the more intuitive method of testing each candidate number
# for factors (divisors) up to half its value, using the "%" modulo operator.
#
# Script contributed by Stephane Chazelas,


LIMIT=1000  # Primes 2 - 1000

Primes()
{
 (( n = $1 + 1 ))             # Bump to next integer.
 shift
 
 if (( n == LIMIT ))
 then echo $*
 return
 fi

 for i; do
   (( i * i > n )) && break   # Need check divisors only halfway to top.
   (( n % i )) && continue    # Sift out non-primes using modulo operator.
   Primes $n $@               # Recursion.
   return
   done

   Primes $n $@ $n            # Recursion.
}

Primes 1

exit 0

# Compare the speed of this algorithm for generating primes
# with the Sieve of Erastosthenes (ex68.sh).

# Exercise: Rewrite this script without recursion, for faster execution.

+

Jordi Sanfeliu gave permission to use his elegant tree script.

Example A-12. tree: Displaying a directory tree

#!/bin/sh
#         @(#) tree      1.1  30/11/95       by Jordi Sanfeliu
#                                         email: mikaku@arrakis.es
#
#         Initial version:  1.0  30/11/95
#         Next version   :  1.1  24/02/97   Now, with symbolic links
#         Patch by       :  Ian Kjos, to support unsearchable dirs
#                           email: beth13@mail.utexas.edu
#
#         Tree is a tool for view the directory tree (obvious :-) )
#

# ==> 'Tree' script used here with the permission of its author, Jordi Sanfeliu.
# ==> Comments added by the author of this document.
# ==> Argument quoting added.


search () {
   for dir in `echo *`
   # ==> `echo *` lists all the files in current working directory, without line breaks.
   # ==> Similar effect to     for dir in *
   # ==> but "dir in `echo *`" will not handle filenames with blanks.
   do
      if [ -d "$dir" ] ; then   # ==> If it is a directory (-d)...
         zz=0   # ==> Temp variable, keeping track of directory level.
         while [ $zz != $deep ]    # Keep track of inner nested loop.
         do
            echo -n "|   "    # ==> Display vertical connector symbol,
                              # ==> with 2 spaces & no line feed in order to indent.
            zz=`expr $zz + 1` # ==> Increment zz.
         done
         if [ -L "$dir" ] ; then   # ==> If directory is a symbolic link...
            echo "+---$dir" `ls -l $dir | sed 's/^.*'$dir' //'`
            # ==> Display horiz. connector and list directory name, but...
            # ==> delete date/time part of long listing.
         else
            echo "+---$dir"      # ==> Display horizontal connector symbol...
                                 # ==> and print directory name.
            if cd "$dir" ; then  # ==> If can move to subdirectory...
               deep=`expr $deep + 1`   # ==> Increment depth.
               search     # with recursivity ;-)
                          # ==> Function calls itself.
               numdirs=`expr $numdirs + 1`   # ==> Increment directory count.
            fi
         fi
      fi
   done
   cd ..   # ==> Up one directory level.
   if [ "$deep" ] ; then  # ==> If depth = 0 (returns TRUE)...
      swfi=1              # ==> set flag showing that search is done.
   fi
   deep=`expr $deep - 1`  # ==> Decrement depth.
}

# - Main -
if [ $# = 0 ] ; then
   cd `pwd`    # ==> No args to script, then use current working directory.
else
   cd $1       # ==> Otherwise, move to indicated directory.
fi
echo "Initial directory = `pwd`"
swfi=0      # ==> Search finished flag.
deep=0      # ==> Depth of listing.
numdirs=0
zz=0

while [ "$swfi" != 1 ]   # While flag not set...
do
   search   # ==> Call function after initializing variables.
done
echo "Total directories = $numdirs"

exit 0
# ==> Challenge to reader: try to figure out exactly how this script works.

Noah Friedman gave permission to use his string function script, which essentially reproduces some of the C-library string manipulation functions.

Example A-13. string functions: C-like string functions

#!/bin/bash

# string.bash --- bash emulation of string(3) library routines
# Author: Noah Friedman <friedman@prep.ai.mit.edu>
# ==>     Used with his kind permission in this document.
# Created: 1992-07-01
# Last modified: 1993-09-29
# Public domain

# Conversion to bash v2 syntax done by Chet Ramey

# Commentary:
# Code:

#:docstring strcat:
# Usage: strcat s1 s2
#
# Strcat appends the value of variable s2 to variable s1. 
#
# Example:
#    a="foo"
#    b="bar"
#    strcat a b
#    echo $a
#    => foobar
#
#:end docstring:

###;;;autoload   ==> Autoloading of function commented out.
function strcat ()
{
    local s1_val s2_val

    s1_val=${!1}                        # indirect variable expansion
    s2_val=${!2}
    eval "$1"=\'"${s1_val}${s2_val}"\'
    # ==> eval $1='${s1_val}${s2_val}' avoids problems,
    # ==> if one of the variables contains a single quote.
}

#:docstring strncat:
# Usage: strncat s1 s2 $n
# 
# Line strcat, but strncat appends a maximum of n characters from the value
# of variable s2.  It copies fewer if the value of variabl s2 is shorter
# than n characters.  Echoes result on stdout.
#
# Example:
#    a=foo
#    b=barbaz
#    strncat a b 3
#    echo $a
#    => foobar
#
#:end docstring:

###;;;autoload
function strncat ()
{
    local s1="$1"
    local s2="$2"
    local -i n="$3"
    local s1_val s2_val

    s1_val=${!s1}                       # ==> indirect variable expansion
    s2_val=${!s2}

    if [ ${#s2_val} -gt ${n} ]; then
       s2_val=${s2_val:0:$n}            # ==> substring extraction
    fi

    eval "$s1"=\'"${s1_val}${s2_val}"\'
    # ==> eval $1='${s1_val}${s2_val}' avoids problems,
    # ==> if one of the variables contains a single quote.
}

#:docstring strcmp:
# Usage: strcmp $s1 $s2
#
# Strcmp compares its arguments and returns an integer less than, equal to,
# or greater than zero, depending on whether string s1 is lexicographically
# less than, equal to, or greater than string s2.
#:end docstring:

###;;;autoload
function strcmp ()
{
    [ "$1" = "$2" ] && return 0

    [ "${1}" '<' "${2}" ] > /dev/null && return -1

    return 1
}

#:docstring strncmp:
# Usage: strncmp $s1 $s2 $n
# 
# Like strcmp, but makes the comparison by examining a maximum of n
# characters (n less than or equal to zero yields equality).
#:end docstring:

###;;;autoload
function strncmp ()
{
    if [ -z "${3}" -o "${3}" -le "0" ]; then
       return 0
    fi
   
    if [ ${3} -ge ${#1} -a ${3} -ge ${#2} ]; then
       strcmp "$1" "$2"
       return $?
    else
       s1=${1:0:$3}
       s2=${2:0:$3}
       strcmp $s1 $s2
       return $?
    fi
}

#:docstring strlen:
# Usage: strlen s
#
# Strlen returns the number of characters in string literal s.
#:end docstring:

###;;;autoload
function strlen ()
{
    eval echo "\${#${1}}"
    # ==> Returns the length of the value of the variable
    # ==> whose name is passed as an argument.
}

#:docstring strspn:
# Usage: strspn $s1 $s2
# 
# Strspn returns the length of the maximum initial segment of string s1,
# which consists entirely of characters from string s2.
#:end docstring:

###;;;autoload
function strspn ()
{
    # Unsetting IFS allows whitespace to be handled as normal chars. 
    local IFS=
    local result="${1%%[!${2}]*}"
 
    echo ${#result}
}

#:docstring strcspn:
# Usage: strcspn $s1 $s2
#
# Strcspn returns the length of the maximum initial segment of string s1,
# which consists entirely of characters not from string s2.
#:end docstring:

###;;;autoload
function strcspn ()
{
    # Unsetting IFS allows whitspace to be handled as normal chars. 
    local IFS=
    local result="${1%%[${2}]*}"
 
    echo ${#result}
}

#:docstring strstr:
# Usage: strstr s1 s2
# 
# Strstr echoes a substring starting at the first occurrence of string s2 in
# string s1, or nothing if s2 does not occur in the string.  If s2 points to
# a string of zero length, strstr echoes s1.
#:end docstring:

###;;;autoload
function strstr ()
{
    # if s2 points to a string of zero length, strstr echoes s1
    [ ${#2} -eq 0 ] && { echo "$1" ; return 0; }

    # strstr echoes nothing if s2 does not occur in s1
    case "$1" in
    *$2*) ;;
    *) return 1;;
    esac

    # use the pattern matching code to strip off the match and everything
    # following it
    first=${1/$2*/}

    # then strip off the first unmatched portion of the string
    echo "${1##$first}"
}

#:docstring strtok:
# Usage: strtok s1 s2
#
# Strtok considers the string s1 to consist of a sequence of zero or more
# text tokens separated by spans of one or more characters from the
# separator string s2.  The first call (with a non-empty string s1
# specified) echoes a string consisting of the first token on stdout. The
# function keeps track of its position in the string s1 between separate
# calls, so that subsequent calls made with the first argument an empty
# string will work through the string immediately following that token.  In
# this way subsequent calls will work through the string s1 until no tokens
# remain.  The separator string s2 may be different from call to call.
# When no token remains in s1, an empty value is echoed on stdout.
#:end docstring:

###;;;autoload
function strtok ()
{
 :
}

#:docstring strtrunc:
# Usage: strtrunc $n $s1 {$s2} {$...}
#
# Used by many functions like strncmp to truncate arguments for comparison.
# Echoes the first n characters of each string s1 s2 ... on stdout. 
#:end docstring:

###;;;autoload
function strtrunc ()
{
    n=$1 ; shift
    for z; do
        echo "${z:0:$n}"
    done
}

# provide string

# string.bash ends here


# ========================================================================== #
# ==> Everything below here added by the document author.

# ==> Suggested use of this script is to delete everything below here,
# ==> and "source" this file into your own scripts.

# strcat
string0=one
string1=two
echo
echo "Testing \"strcat\" function:"
echo "Original \"string0\" = $string0"
echo "\"string1\" = $string1"
strcat string0 string1
echo "New \"string0\" = $string0"
echo

# strlen
echo
echo "Testing \"strlen\" function:"
str=123456789
echo "\"str\" = $str"
echo -n "Length of \"str\" = "
strlen str
echo



# Exercise for reader:
# Add code to test all the other string functions above.


exit 0

Stephane Chazelas demonstrates object-oriented programming a Bash script.

Example A-14. Object-oriented database

#!/bin/bash
# obj-oriented.sh: Object-oriented programming in a shell script.
# Script by Stephane Chazelas.


person.new()        # Looks almost like a class declaration in C++.
{
  local obj_name=$1 name=$2 firstname=$3 birthdate=$4

  eval "$obj_name.set_name() {
          eval \"$obj_name.get_name() {
                   echo \$1
                 }\"
        }"

  eval "$obj_name.set_firstname() {
          eval \"$obj_name.get_firstname() {
                   echo \$1
                 }\"
        }"

  eval "$obj_name.set_birthdate() {
          eval \"$obj_name.get_birthdate() {
            echo \$1
          }\"
          eval \"$obj_name.show_birthdate() {
            echo \$(date -d \"1/1/1970 0:0:\$1 GMT\")
          }\"
          eval \"$obj_name.get_age() {
            echo \$(( (\$(date +%s) - \$1) / 3600 / 24 / 365 ))
          }\"
        }"

  $obj_name.set_name $name
  $obj_name.set_firstname $firstname
  $obj_name.set_birthdate $birthdate
}

echo

person.new self Bozeman Bozo 101272413
# Create an instance of "person.new" (actually passing args to the function).

self.get_firstname       #   Bozo
self.get_name            #   Bozeman
self.get_age             #   28
self.get_birthdate       #   101272413
self.show_birthdate      #   Sat Mar 17 20:13:33 MST 1973

echo

# typeset -f
# to see the created functions (careful, it scrolls off the page).

exit 0